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Abstract— This work presents a new version of tactile-sensing
finger, GelSlim 3.0, which integrates the ability to sense high-
resolution shape, force, and slip in a more compact form
factor than previous implementations, designed for cluttered
bin-picking scenarios. The novel design integrates real-time
model-based algorithms to measure shape, estimate the 3-
D contact force distribution, and detect incipient slip. The
constraints imposed by the photometric stereo algorithm used
for depth reconstruction and the implementation of a planar
sensing surface make the miniaturization of previous designs
nontrivial. To achieve a compact integration, we optimize the
optical path from illumination source to camera. Using an
optical simulation environment, we develop an illumination
shaping lens and position the source LEDs and camera. The
optimized optical configuration is integrated into a finger
design composed of a robust and easily replaceable snap-to-
fit fingertip module that facilitates manufacture, assembly, use,
and repair. To stimulate future research in tactile-sensing and
provide the robotics community access to a reliable and easily
reproducible tactile finger with a diversity of sensing modalities,
we open-source the design, fabrication methods, and software
at https://github.com/mcubelab/gelslim.

I. INTRODUCTION

Touch is an essential sensing modality for interfacing with
the world. It provides a direct and powerful mechanism for
reacting to the environment and is present in almost all
biological systems but missing from most robotic ones. We
are particularly motivated by the potential of tactile feedback
to sense and control the complex contact interactions that
occur while manipulating objects within an environment.

This paper presents GelSlim 3.0, a new version of the
tactile-sensing finger GelSlim [1], which has been designed
for grasping in cluttered environments, and integrates real-
time high spatial resolution measurement of shape, force, and
slip, in a more compact form factor that is easier to fabricate,
utilize and maintain. We present four main contributions.
• Design: GelSlim 3.0 is the product of an optimization

of the optical path, from illumination source to camera,
around the constraints imposed by the photometric stereo
algorithm used for depth reconstruction in vision-based
tactile sensors [2]. In particular, we optimize the placement
of the illumination sources and the geometry of a light
shaping lens to enable a compact form factor integration
while retaining the ability to reconstruct depth. We evaluate
the novel tactile-sensing finger compared to current tactile
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Fig. 1. (a) GelSlim 3.0 sensors grasping a chess rook and the respective
tactile imprint and measurement results. (b) High-Resolution Tactile Image
(c) Depth Reconstruction (d) Incipient Slip (e) Tangential Force Field (f)
Normal Force Field.

sensor designs and discuss our implementation’s trade-offs
and limitations.

• Manufacturing: We utilize accessible manufacturing
methods to fabricate a new tactile-sensing finger, which
is assembled out of a small number of components with a
simple and modular snap-to-fit design.

• Functionality: The tactile sensor integrates the capability
to use real-time model-based algorithms to measure and
reconstruct 3D geometry, detect incipient slip, and estimate
the spatial distribution of 3D contact forces.

• Open-Source: We open-source the design to encourage
the proliferation of tactile-sensing technology within the
robotics community and to help address some of the
many bottlenecks of tactile-sensing in robotics, including
manufacture, distribution, and use [3].
This paper is structured as follows: We review related

works in tactile-sensing in Section II and discuss the de-
sign goals in Section III. We describe the optimization
and integration of the optomechanical design components
in Section IV and demonstrate the sensing capabilities of
resultant tactile-sensing finger in Section V. We compare
the novel design to other current tactile-sensing designs and
discuss its limitations in Section VI. Finally, we briefly
summarize the contributions of the paper in Section VIII.

https://github.com/mcubelab/gelslim
https://github.com/mcubelab/gelslim
https://www.youtube.com/watch?v=Y10XN9byO0g


II. RELATED WORK

Different Versions of Tactile Sensor Figure

Fig. 2. Models of previous and current integrated tactile sensors (from left
to right): GelSight [2], GelSlim 2.0 [4], GelSlim MPalm [5], and GelSlim
3.0.
A. GelSight Sensors

GelSight is a vision-based retrographic tactile sensor that
makes measurements by using a camera to capture high-
resolution images of the surface deformation of an elastomer
with opaque skin. The elastomer is illuminated from different
directions by color LEDs; the resultant colored shading is
used to make direct measurements of the position, shape,
and 3D geometry of objects contacting the surface. These
types of sensors have become popular within the robotics
literature due to their ability to capture contact state feedback
with high spatial resolution while maintaining a compact
instrumentation [1]. The continued development and im-
provement of these sensors have yielded several designs that
offer compactly integrated and rugged form factors [1], [3],
where previously they had been more bulky and/or fragile
[6], [7], [2].

Donlon et al. [1], [4] improved upon Dong et al.’s [2] fin-
gertip version of GelSight by altering the optical path to use a
waveguide to route light through the fingertip and a mirror to
view the sensor surface from a distance, allowing for a more
compact wedge-shaped fingertip design, suitable for cluttered
picking scenarios. Wilson et al. [8] demonstrated a fully
actuated two-finger gripper with multiple GelSight tactile
sensors, which were used to measure the surface topology of
an object across multiple views simultaneously and track the
shear and and tensile stresses. Sensors similar to GelSight
and GelSlim that utilize rich 2D and 3D data have been
successfully applied in robotic manipulation. Li et al. [9]
utilized GelSight fingertip in tandem with a feature-based
matching technique to localize and perform an insertion
task with small parts held in a robot hand. Tian et al.
[10] Proposed and demonstrated an unsupervised learning
framework, deep tactile MPC, to learn a predictive model
from raw tactile sensor inputs for performing servoing tasks
with a GelSight-style tactile sensor. Hogan et al. [5] explored
the use of tactile feedback measured by a palm-shaped
GelSlim sensor to develop robust primitives with the ability
to handle external perturbations and account for object pose

uncertainty. Bauza et al. [11] utilized GelSlim sensors to
reconstruct the shape of objects from tactile imprints and
accurately localize previously reconstructed objects. She et
al. [12] demonstrated the ability to manipulate flexible cables
by pairing grip and pose controllers that utilized depth and
shape feedback from a GelSight sensor to regulate cable
sliding dynamics.

B. Other Vision-Based Tactile Sensors
Vision-based tactile sensing approaches are synergistic

with deep learning techniques, which have been demon-
strated to provide robust and descriptive interpretations of
high-dimensional data. There is a diversity of sensor designs
that rely more heavily on these methods. For example, She et
al. [13] demonstrated an exoskeleton covered soft continuum
finger that utilized a convolutional neural network to predict
the finger’s position. Padmanabha et al. [14] used a thumb-
shaped tactile sensor, OmniTact, paired with a ResNet-based
neural network to perform tactile state estimation for a rep-
resentative insertion task. While the number of vision-based
tactile-sensing designs continues to increase, Lambeta et al.
[3] notes the dearth of sensors that simultaneously fulfill the
requirements of being 1) high resolution, 2) highly sensitive,
3) reliable, 4) easy to use, 5) compact and 6) inexpensive.
To resolve this bottleneck impeding the widespread adoption
of touch sensing in robotic manipulation, they released an
open-source tactile sensor Digit that fulfills these criteria.

III. DESIGN GOALS

The use of model-based photometric stereo techniques
to measure 3D geometry is a primary influence on the
configuration and position of the optical elements within a
tactile sensor [1]. The decision to incorporate these tech-
niques constrains the design space as it requires that at
least three colors of light be directed across the gel from
different directions [15]. These requirements also enforce
geometric constraints that affect feasible camera placement
and illumination paths. For example, the need for multiple
evenly distributed illumination channels encourages designs
that position luminaries in a radially symmetric configura-
tion. Limitations of the focal length of the available cameras
constrain the maximum field of view possible, and thus, the
sensing area for a given sensor thickness. A comprehensive
review of the tactile design space constraints can be found
in [1]. These constraints often prove challenging and coun-
terproductive to slim robotic finger integrations [1]. While
previous implementations of GelSlim have eschewed model-
based reconstruction techniques in favor of relaxing the
design space constraints [1], [4], these techniques continue
to prove useful for complex manipulation scenarios [12].

Previous designs of GelSight and GelSlim, while cost-
effective, have been difficult to manufacture and assemble
en-masse or by inexperienced users due to their reliance on
complex by-hand fabrication techniques that are incompat-
ible with retail fabrication services (e.g., acrylic waveguide
bending, custom hand-soldered luminaries)[3], [1], [16], [2].

To address these issues while maintaining the strengths
of previous GelSight and GelSlim designs, we present the
following design goals for the proposed tactile finger:



• Compactness of the finger allows access to and precise
placement of objects in clutter by squeezing between
objects or separating them from the environment.

• model-based Measurement Methods utilized in previ-
ous high-resolution camera-based tactile sensors provide
multiple types of rich contact state feedback (raw high-
resolution images, shape, force, and slip) at real-time
speeds without requiring data-expensive calibration or
learning procedures. These provide a strong basis for novel
methods of dexterous manipulation and control.

• Design for Assembly (DFA) enforces robust and modular
design practices that make the fabrication and utilization
of the proposed tactile finger accessible to a broader range
of the robotics research community.
The following sections give a detailed description of the

process to use these design goals to select and optimize
the optical (Section IV-A), electrical (Section IV-B), and
mechanical (Section IV-C) design parameters. Finally, we
describe the fabrication and assembly of the tactile finger
(Section IV-D).

IV. DESIGN OF GELSLIM 3.0
A. Optical Design

The use of photometric stereo techniques is a primary
influence on the constraints of a tactile sensor’s optical
design space. Therefore, we briefly review the photometric
stereo algorithm and its assumptions (IV-A.1). We evaluate
these restrictions paired with the proposed design goals to
set the initial conditions for the design space (IV-A.2). We
then generate a raytracing simulation of an initial optical
path using illumination design software, identify design
optimization parameters (IV-A.3) and generate an optimized
optical configuration using the software’s built-in optimizer
(IV-A.4).

1) Photometric Stereo: Our implementation of photomet-
ric stereo relies on the same techniques first described by
Johnson et al. [15] and used in the original GelSight sensor
design as a way to perform model-based reconstruction of the
deformation of an elastomer in 3D. The technique assumes
the following three conditions:

1) The image seen by the vision system is an orthographic
projection of the sensor surface, i.e. every point in the
image corresponds to a point on the sensor surface.
Thus, the gradients of the surface deformation can be
defined as the partial derivatives at those points.

2) The shading at any point in the image is a function of
the surface normal of the sensing surface; this effec-
tively assumes no cast shadows or interreflections.

3) The proportion of incident light reflected (albedo) is
constant across the sensor’s surface.

To reconstruct the surface normals, we determine the
mapping between the intensity at each pixel and the re-
flectance function. Theoretically, many sets of gradients
will correspond to a set of intensity values; therefore, the
reflectance function is not trivially invertible. For this reason,
the photometric stereo technique uses images captured un-
der different illumination conditions (from three differently

colored channels). The three measurements per pixel over-
constrain the problem and allow us to estimate the two
gradient values. We measure the intensity using an object
of a known shape, e.g., a sphere with a known radius. From
the data, we generate a lookup table; which serves as the
method of inversion. Finally, we use a fast Poisson solver to
integrate the surface gradient and reconstruct the depth.

While this method does not assume point light sources
[15], we incorporate illumination homogeneity as a second-
order assumption. Inhomogeneous behavior, e.g., areas with
intensity variance and missing illumination, will reduce the
depth reconstruction accuracy. The former will dispropor-
tionately skew the gradient function, and the latter will
reduce the number of measurements per pixel, making the
reflectance-intensity mapping not trivially invertible and will
generate incorrect depth values.

2) Initial Conditions: To satisfy the photometric stereo
assumptions, we select the initial design parameters based
on previous designs of GelSight and GelSlim as well as our
design goals. We discuss the effects our selections have on
the design space.
• Camera: We choose a Raspberry Pi 160° variable focus

wide-angle camera module (ODSEVEN) as it is an inex-
pensive and compact camera that provides a large field
of view and a close minimum focus distance. We cannot
completely satisfy the orthographic assumption as the
camera’s output is warped due to the spherical distortion
induced by the wide-angle lens; thus, while all points in
the image correspond to a point on the sensing surface,
they are not orthographic projections of one another. We
address this discrepancy in Section V-A by performing a
pre-processing step that removes the wide-angle distortion.

• Shaping Lens: We select a hexagonal prism with an
angled loft as the basis for the initial lens geometry.
The hexagonal shape naturally satisfies the needs of the
photometric stereo algorithm used with three illumination
channels by providing radially symmetric illumination,
which induces the required constraints on the reflectance
function [15]. We scale the initial lens geometry to
maximize the camera modules’ field of view and,
thereby, the total sensing area while constraining the
maximum finger thickness to be 20 mm. We choose
this constraint based on our observations of compact
grippers commonly used in industrial pick-and-place
applications. Because this assumption is mainly affected
by the lens geometry we address our approach to fulfilling
its requirements in the subsequent section when selecting
the illumination shaping feature’s optimization parameters.

• Gel Shape: The light distribution is affected by the curva-
ture of the sensing surface. Previous tactile sensors capable
of model-based depth reconstruction using photometric
stereo have had to use parabolic and spherically curved
surfaces to properly fulfill the technique’s assumptions
at the cost of increased grasp complexity [2]. We select
a planar surface paired with a shaping lens to simplify
grasping and allow the fingers to more readily grasp
objects lying flush on flat surfaces [17].



Fig. 3. Exploded diagram of the GelSlim 3.0 tactile finger and its 10 components

• Gel Material: We select an elastomer skin with Lamber-
tian reflectance that provides a uniform and diffuse albedo.
This enables measurements of the surface normal which
are more precise than measurements with a semi-specular
albedo[2].

• Illumination Using a Lambertian reflectance skin limits
the design space as the intensity of light reflected by the
diffuse albedo is too low to effectively use total internal
reflection (TIR) techniques to route and distribute the light
across the surface; a technique used in previous versions
of GelSlim and GelSight with semi-specular skin [1], [16].
As a result, the luminaries must directly illuminate the
elastomer’s surface, and the optical design must incorpo-
rate alternative methods to illuminate the sensor’s surface
homogeneously. We aim to accomplish this by optimizing
the light distribution with an illumination shaping lens.
3) Simulation and Parameter Selection: We simulate the

optical system configured by the initial conditions using
Synopsys LightTools Illumination Design Software linked to
a Solidworks CAD model of the shaping lens; this allows
us to use Solidworks geometric feature parameters directly
as optimization variables. To accurately simulate the optical
system we consider the following:

• Material Parameters: To model the ray interactions
between different materials, we set the refractive indices
and reflectance of each optical component using built-in
material profiles.

• Data Collection: We place a forward simulation re-
ceiver on the modeled sensing surface to collect inten-
sity and color distribution data.

• Source Models: To simulate the selected photodiodes,
we use the source models provided by the luminary
manufacturer, which contain their package CAD, source
distribution, and spectral region data.

• Emittance: To model an intensity-matched ideal pho-
tometric stereo system, we match radiometric power for
all sources.

We performed proof of concept testing to constrain the
design space and select the lens shape and LED package

type. We find that a hybrid swept spline lens distributes
the illumination intensity more homogeneously than a lens
with flat sides 5 while inducing fewer interreflective visual
artifacts than planar or spherical convex and concave lenses.
Additionally, we find that a 60° viewing angle PLCC-4
Package OSRAM TOPLED Black T66 series LED provides
an illumination profile that is diffuse yet easily shaped. We
initialize the optimization in Eq.(1) according to the features
of the design space seen in Fig. 4:

Given A = [x,y,z,α], B = [L,θ ,R1,R2,R3] (1)

minimize f (A,B)

sub ject to : 0 ≤ z ≤ t1 and σ(x,y) = (0,0)
0 ≤ L ≤ t2 µCIE(x,y) = (.333, .333)
0 ≤ α ≤ 90 G(x,y) = (0,0)
0 ≤ θ ≤ 90 x = mx, y ≥ my

R1 ≥ 0, R2 ≥ 0, R3 ≥ 0

Where A and B represent the LED position and shaping
lens parameters, respectively, where x,y,z are the coordinate
positions within cartesian space and α is the angle of the
LED relative to the top face of the lens. t1 is the total
thickness of the lens, and t2 is the maximum thickness of
the shaping feature. The maximum thickness is constrained
to 2 mm to ensure the shaping feature does not extend too
far from the sensing surface and increase the finger’s total
thickness. mx,y is coordinate origin within the shaping feature
plane.

In abstract, the cost function f (A,B) represents the design
space modeled by the initial optical configurations within
the simulator engine. The CIE mean (µCIE ) represents the
average chromaticity coordinate value for all bins (i.e., test
coordinates) in a receiver mesh, where the X coordinate
represents a mix of the three CIE RGB curves and Y
represents the luminance value. The goal value designates
the chromaticity coordinates of the reference white point
(the color coordinates that define the color ”white” and
thus, the point at which red, green, and blue are mixed
homogeneously). Satisfying this goal ensures that the total
illumination distribution approximates the white point. The

https://www.synopsys.com/optical-solutions/lighttools.html
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Fig. 4. Diagram of the hybrid swept spline lens with optimization
parameters labeled across multiple views. The point mx,y is marked with
a red dot.

illuminance mesh standard deviation (σ ) goal value incen-
tivizes the intensity to remain constant across the sensing
surface. Thus, the optical configuration will maintain a ho-
mogeneous and evenly mixed distribution. The illumination
centroid (G(x,y)) is the position of the arithmetic mean
of the intensity distribution across the local receiver bins.
The goal value further enforces illumination homogeneity
by addressing assumption (2). The goal value incentivizes
positioning the centroid at the center of the lens (G(x,y) =
(0,0)). This directly addresses assumption (2) as it reduces
interreflections, which most often occur when high-intensity
illumination refracts and reflects while directed at the acute
features (ex: sharp corners) often present near the boundary
of a lens. Due to the optical configuration’s radial symmetry,
we can utilize a single parameter set to represent the shap-
ing geometries used for each of the three individual color
channels. The full optical configuration is used during the
optimization of the proposed minimization problem.

Fig. 5. Heat-maps of the simulated radiant flux across the surface of the
sensor before and after optimization plotted using a 25x25 receiver mesh.

4) Optimization Results: The optimizer evaluates as a
two-step process where Solidworks configures the lens fea-
tures based on the optimization variables and initial condi-
tions, and LightTools uses raytracing to simulate the optical
system and evaluate the cost function. We plot and display

a comparison of the intensity distributions of the initial and
final geometries in Fig. 5. The optimized shaping features
effectively distribute the illumination across the surface of
the sensor. We observe that the full channel distribution of
the optimized lens is not entirely radially symmetric; this is
likely due to the interreflective artifacts generated within the
compact form factor lens. Additionally, while the distribution
is improved, it is not ideally homogeneous as there are still
portions of the sensing surface near the edges where there
are large deviations in the illumination. We find that at the
origin coordinate, the optimized design sufficiently satisfies
the aforementioned first and second-order assumptions and
demonstrates the desired ability to use the photometric stereo
algorithm to generate 3D reconstructions with low noise as
seen in Fig. 6 and Fig. 9. Reconstructions at the peripheral
edges of the sensor are more prone to noisy behavior. This
is in comparison with the initial design, which did not
produce usable photometric data. We further discuss the
finger’s resultant capabilities and compare the performance
to previous tactile sensor designs in Section VI.

r² = 0.76204

r² = 0.93888

a)

b)

Fig. 6. 3D reconstruction results for the initial (a) and optimized (b) design
configurations. Reconstructions were generated after calibrating each sensor
configuration with 100 images. The plots compare the measured surface
normal angles and ground truth. We find that the optimized sensor measures
the surface normal more precisely.

B. Electrical Design
The electrical assembly supplies power to and secures the

LED luminaries. The circuit diagram is shown in 7. The
resistance values R1, R2, and R3, normalize the three color
channel’s relative illumination while R0 modulates the total
intensity. We use the camera module’s spectral transmission
profile and manufacturer specifications of the current vs.
luminous intensity relationship for each LED to select and
tune the channel resistances. The LEDs for each channel
are wired as a 3x2 array in parallel to homogenize the
illumination and minimize sequential intensity loss across
LEDs in a channel.

C. Mechanical Design
The mechanical assembly consists of the fingertip, finger-

body, and finger-back. These three components are designed
to encapsulate the optical path and provide the most compact



Fig. 7. Circuit diagrams of the Driver PCB (Top) each color channel has
its own LED array (Bottom).

form factor possible. The fingertip’s distal face is curved,
which allows the finger to more readily slip between objects
when grasping in clutter. The mounting geometry is designed
for use with a Weiss WSG-32 gripper but can be easily
adjusted to accommodate various grippers. The fingertip
and finger-body are joined with an easily separable sliding
rail system in addition to several screws. The respective
component cavities of the two bodies maintain press-fit
tolerances. In combination, these features allow for easy
assembly and maintenance of the sensor, as any component
can be accessed and easily removed for replacement if
necessary. The modular snap-to-fit mechanical design allows
the fingertip to be easily swapped out, if necessary, to switch
between task-specific elastomers.

D. Fabrication and Assembly
The finger assembly is composed of ten components as

seen in Fig. 3, all of which, except the elastomer, are
either 3D printed (Fingertip, finger-body, finger-back), retail
made-to-order (Driver PCB, Illumination harness, and acrylic
lens) or off the shelf components (camera module, mountain
bearings, and M2 Heat Inserts and screws). Once the heat
inserts are embedded in the fingertip using a soldering iron,
the finger is quickly assembled because of the modular
”snap-to-fit” design.

The elastomer is cast using XP565 (Silicones Inc.)
platinum-based silicone mixed in a 1:10 ratio of activator
to base. After degassing in a vacuum chamber, it is poured
into an acrylic mold. Once cured, the reflective layer was
painted using a gray silicone ink (Print-On Silicone Ink,
Raw Material Suppliers) using a 10:1 ratio of silicone ink to
its catalyst. A silicone solvent (NOVOCS Gloss, Reynolds
Advanced Materials) is added to dilute the silicone ink in a
1:10:30 ratio of ink catalyst to ink to solvent, and an airbrush
is used to spray the material on top of the elastomer. After
the reflective layer has cured, tracking markers are added
to the elastomer by laser cutting holes in a grid pattern on
the elastomer’s painted surface and adding black silicone
ink. The marker layer is sealed by spraying an additional
layer of black silicone ink in a process similar to that of the
reflective layer. Finally, the elastomer is cut to shape using
a template and then bonded to the acrylic lens and finger-
body using silicone sealant (Gorilla Silicone Clear Sealant);
the completed sensor is then left to cure for 24 hours.

V. INTEGRATED ALGORITHMS FOR TACTILE-SENSING

Raw Image Binary Mask Transform Matrix Corrected Image

Fig. 8. Diagram of the processing pipeline used to correct spherical lens
distortion.

A. Pre-Processing
To sense a physically meaningful contact with the tactile

finger, one preprocessing step is needed to correct the optical
distortion introduced by the acrylic shaping lens (Part 2 in
Fig. 3) and the wide-angle camera module. The distortions
in the raw tactile image output can be clearly visualized
by the curved marker array in the second image of Fig 8
below. To correct the distortion, we generate a binary mask
from the raw tactile image to separate the marker array
from the background and detect each marker’s position.
Using the marker array’s known distribution, we calculate the
correspondence between each marker in the distorted image
and its true position. We interpolate this correspondence
across all pixels in the raw image to find the transformation
matrix that will reverse the distortion.

B. Shape and Geometry
We described the photometric stereo reconstruction al-

gorithm and its assumptions previously in Section IV-A.1.
Fig. 9 demonstrates these capabilities and shows the mea-
sured RGB image and the reconstructed depth map of some
daily objects touched. The local 3D geometry of the object
measured by GelSight/GelSlim sensor has been demonstrated
to be useful for object pose estimation [12], [11].

Fig. 9. Raw tactile imprints and their respective 3D reconstructions. Ball
Bearing (a) Screw Head (b) Screwdriver Handle (c).

C. Shear and Incipient Slip
Utilizing the method proposed by Dong et al. [18] an

approximated shear force [12] can be estimated by tracking
the motion of the marker array. By analyzing the coherency
of the marker motion field, we can also predict slip.

The core idea is to distinguish whether the sensor surface’s
motion during contact is consistent with a rigid body motion
or not. When the object and sensing surface are in stiction,
the surface contact patch and the object move together as a
rigid body. When the object is going to slip, some portion
of the surface contact patch starts losing stiction with the
object, and the motion of the contact surface is no longer a
rigid body motion.



We first detect the contact region in the tactile image
by selecting the region with a depth that exceeds a preset
threshold. We track the markers’ motion in the contact region
as the “real” motion of the sensor surface in contact. We then
calculate the marker motion’s rigid body transformation ma-
trix in contact and get the “estimated” motion of the sensor
surface under rigid body constraints. A significant deviation
between the “real” and “estimate” motion field represents
incipient slip. Fig. 10 shows incipient slip detection with the
tactile images captured while a chess piece is rotated in the
grasp.

Fig. 10. The evolution from stable contact to incipient slip while the object
is being rotated. We label the contact region with yellow, “real” marker
tracking with red arrows, “estimate” marker tracking with green arrows,
and slipping regions (markers) with a white circle.

D. Dense Force Distribution
To measure an accurate force field, we correspond the

gel surface’s motion field (measured by tracking the 2D
marker motion) and the gel’s deformation in the z-axis (depth
image) to the force field paired with the FEM model of the
gel. The method to do so, proposed by Ma et al. [4] and
implemented in GelSlim 2.0, can be augmented using the
depth reconstruction offered by the novel GelSlim 3.0 sensor.

We discretize the gel using m 8-node hexahedron ele-
ments, where the displacements of the 8 nodes represent
the deformation of one FEM element. We calculate the
displacement δx,δy of the 4 nodes on the top by interpolating
the marker motion field, the displacement δz with the depth
map measurement. The δx,δy need to be adjusted based on
the viewing angle between the node-camera frame and δz. We
use standard FEM theory to calculate the stiffness matrix K
with the 8-node hexahedron elements and measured Young’s
Modulus and Poisson’s ratio of the gel. The force field then
can be directly calculated with the following equation:

F = KU (2)
where U is the displacement matrix of all nodes which are
directly observable. We show the marker motion field, dense
shear force, and the normal force field in Fig. 11 when the
sensor is holding a twisted chess piece.

Fig. 11. The marker motion field, tangential force field and normal force
field (N)

VI. DISCUSSION

We compare the design components of our sensor with
other similar sensors in Table I. We find that our design

provides a form factor with comparable thickness and price
point to the smallest available sensor Digit while providing
a sensing area that is twice as large. This is achieved
while incorporating all sensing modalities found in previous
versions of GelSight and GelSlim.
A. Design Comparison, Limitations and Trade-offs

TABLE I
Comparison of GelSlim 3.0, GelSlim 2.0, GelSight, Digit and Omnitatct.

(*Considering the manufacturing of 1000 pieces)

GelSlim 3.0 GelSlim 2.0 [4] GelSight [2] Digit [3] Omnitact [14]
Size [mm] 37X80x20 50x172x25 40x80x40 20x27x18 30x30x33
Weight [g] 45 222 NA 20 NA
Sensing Field [mm2] 675 1200 252 304 3110
Image Resolution 640x480 640x480 640x480 640x480 400x400
Image FPS 90 90 30 60 30
Cost Components [$] 25* NA 30 15* 600

The trade-offs demonstrated by the optimized sensor are
generalizable to tactile sensors’ design in other form factors.
Thus, they are important lessons to keep in mind for future
designs. First and foremost is the use of planar sensing
surfaces alongside photometric stereo. In this instance, the
sensing surface was not used to shape the illumination to
enable grasping from flush surfaces. Although we demon-
strated the ability to integrate these two design features
using shaping methods, it came at the cost of significantly
constraining the design space. We would like to explore
alternative methods of fulfilling the photometric stereo as-
sumptions to achieve more compact integration. For example,
shaping the illumination directly at the source by using
custom-designed microlenses.

Next is the relationship between the camera module’s size,
the field of view, and the sensor’s thickness. To further
minimize the form factor, the field of view must be reduced.
We used a wide-angle fish-eye lens as a workaround to this
trade-off, but this and other methods, for example, utilizing
more than one camera, often come at a processing cost.
Most image processing software pipelines are sufficiently
advanced such that the cost-reward relationship is favor-
able but this may quickly diminish when using alternative
workarounds, for example, utilizing more than one camera
to view the sensing surface. In this instance, the cost-reward
relationship is less favorable due to the amount of high-
dimensional data that needs to be processed.

Finally, is the influence of compactness on the second
assumption of the photometric stereo algorithm. It is clear
from our results that while interreflections can be minimized
through shaping methods and absorptive coatings (in our case
marker ink), they cannot be entirely eliminated, and thus they
will add some residual noise within the reconstruction. While
our design can capture texture information, the features have
to be relatively large. This is in comparison with the previous
versions of GelSight, which could easily reconstruct micro
geometry and surface textures [19], [2], [20], [15]. That being
said, left unaccounted for, this interreflective behavior will
inhibit the ability to further minimize the sensor thickness
in future designs that aim to utilize photometric stereo depth
reconstruction.



VII. OPEN-SOURCE TACTILE-SENSING FINGER

On the GelSlim Github, we provide documentation, design
schematics, and production files (.gbr, .step) for all of the
requisite components needed to fabricate a sensor. We also
provide a simple software GUI to interface with the sensor
and a tutorial describing a data collection system’s setup
using a Raspberry Pi. The software provides easy access,
and use of the three integrated tactile-sensing algorithms
described (depth reconstruction, dense force distribution and
incipient slip detection) and incorporates the ability to col-
lect, measure and plot tactile imprint data in real-time.

VIII. CONCLUSIONS

We present a novel GelSlim tactile finger design and
develop the design using illumination design software and
design for assembly techniques to analyze, explore, and
optimize the finger within its design space. Specifically,
we evaluate the effect of incorporating photometric stereo
measurement techniques on the design space and demon-
strate methods to optimize illumination shaping features to
fulfill its assumptions. We develop a compact form factor
with replaceable modules suited for grasping in cluttered
bin picking scenarios that are easy to manufacture, use, and
maintain. We demonstrate that our sensor can utilize all mea-
surement methods used by previous GelSight and GelSlim
sensors, specifically 3D depth reconstruction, incipient slip
and shear detection, and dense force distribution estimation.
We compare our sensor to several other similar tactile-
sensing designs and discuss its limitations. We anticipate our
future work to continue exploring and developing illumina-
tion shaping designs suited explicitly for model-based tactile
measurement methods.
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